Problem One: Undecidability Reductions

For each of the following languages, show that the language is undecidable by reducing A_{TM} to it.

- i. Prove that $ENTERS = \{ \langle M, w, q \rangle | q \text{ is a state in } M \text{ and } M \text{ enters } q \text{ when run on } w \}$ is undecidable.
- ii. Prove that $INFINITE = \{ \langle M \rangle | \mathcal{L}(M) \text{ is infinite } \}$ is undecidable.
- iii. Prove that $JUSTONE = \{ \langle M \rangle | | \mathscr{L}(M) | = 1 \}$ is undecidable.

Problem Two: Unrecognizability Reductions

For each of the following problems, show that the problem is unrecognizable by reducing the indicated problem to it.

- i. The language A_{ALL} is defined as $A_{ALL} = \{ \langle M \rangle \mid \mathscr{G}(M) = \Sigma^* \}$. A_{ALL} is unrecognizable (you'll see a proof of this later on). Using this fact, prove that the language $SUBSET_{TM}$ defined as $SUBSET_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs, and } \mathscr{G}(M_1) \subseteq \mathscr{G}(M_2) \}$ is unrecognizable by reducing A_{ALL} to $SUBSET_{TM}$.
- ii. Prove that $E_{TM} = \{ \langle M \rangle | \mathscr{L}(M) = \emptyset \}$ is unrecognizable by reducing \overline{A}_{TM} to E_{TM} .